Statistical downscaling of precipitation

نویسندگان

  • M. Z. Hashmi
  • A. Y. Shamseldin
  • B. W. Melville
چکیده

Papers published in Hydrology and Earth System Sciences Discussions are under open-access review for the journal Hydrology and Earth System Sciences Abstract Global Circulation Models (GCMs) are a major tool used for future projections of climate change using different emission scenarios. However, for assessing the hydrological impacts of climate change at the watershed and the regional scale, the GCM outputs cannot be used directly due to the mismatch in the spatial resolution between 5 the GCMs and hydrological models. In order to use the output of a GCM for conducting hydrological impact studies, downscaling is used. However, the downscaling results may contain considerable uncertainty which needs to be quantified before making the results available. Among the variables usually downscaled, precipitation downscaling is quite challenging and is more prone to uncertainty issues than other climatological 10 variables. This paper addresses the uncertainty analysis associated with statistical downscaling of a watershed precipitation (Clutha River above Balclutha, New Zealand) using results from three well reputed downscaling methods and Bayesian weighted multi-model ensemble approach. The downscaling methods used for this study belong to the following downscaling categories; (1) Multiple linear regression; (2) Multi-15 ple non-linear regression; and (3) Stochastic weather generator. The results obtained in this study have shown that this ensemble strategy is very efficient in combining the results from multiple downscaling methods on the basis of their performance and quantifying the uncertainty contained in this ensemble output. This will encourage any future attempts on quantifying downscaling uncertainties using the multi-model ensem-20 ble framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synoptic approach to forecasting and statistical downscaling of climate parameters (Case study: Golestan Province)

The present study attempts to introduce a method of statistical downscaling with a synoptic view. The precipitation data of Golestan Province has been used for the years 1971 to 2010. Employing multivariable regression, this study models the precipitation gauges in the station scale, by making use of 26 predicting components of model HadCM3, on the basis of two A2 and B2 scenarios. However, the...

متن کامل

Synoptic approach to forecasting and statistical downscaling of climate parameters (Case study: Golestan Province)

The present study attempts to introduce a method of statistical downscaling with a synoptic view. The precipitation data of Golestan Province has been used for the years 1971 to 2010. Employing multivariable regression, this study models the precipitation gauges in the station scale, by making use of 26 predicting components of model HadCM3, on the basis of two A2 and B2 scenarios. However, the...

متن کامل

Climate change scenarios generated by using GCM outputs and statistical downscaling in an arid region

Two statistical downscaling models, the non-homogeneous hidden Markov model (NHMM) and the Statistical Down–Scaling Model (SDSM) were used to generate future scenarios of both mean and extremes in the Tarim River basin,which were based on nine combined scenarios including three general circulation models (GCMs) (CSIRO30, ECHAM5,and GFDL21) predictor sets and three special report on emission sce...

متن کامل

Statistical downscaling with artificial neural networks

Statistical downscaling methods seek to model the relationship between large scale atmospheric circulation, on say a European scale, and climatic variables, such as temperature and precipitation, on a regional or subregional scale. Downscaling is an important area of research as it bridges the gap between predictions of future circulation generated by General Circulation Models (GCMs) and the e...

متن کامل

Comparison of climate change scenarios generated from regional climate model experiments and statistical downscaling

We compare regional climate change scenarios (temperature and precipitation) over eastern Nebraska produced by a semiempirical statistical downscaling (SDS) technique and regional climate model (RegCM2) experiments, both using large scale information from the same coarse resolution general circulation model (GCM) control and 2 x COe simulations. The SDS method is based on the circulation patter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009